MANONMANIAM SUNDARANAR UNIVERSITY TIRUNELVELI

UG COURSES – AFFILIATED COLLEGES

B.Sc. Electronics (Choice Based Credit System)

(with effect from the academic year 2016-2017 onwards)

(45th SCAA meeting held on 09.02.2017)

Sem	Pt I/II / III/ IV/ V	Sub No.	Subject status	Subject Title	Hrs/ week	Cre- dits	Marks					
Sem							Maximum			Passing minimum		
							Int.	Ext.	Tot.	Ext.	Tot.	
III		15	Core – 3	ELECTRONIC CIRCUITS	6	4	25	75	100	30	40	
		16	Core – 4	ELECTRONIC MEASUREMENTS AND CIRCUIT THEORY	6	4	25	75	100	30	40	
		17	Major Practical – III	CIRCUITS AND MEASUREMENTS LAB	6	4	50	50	100	20	40	
	III	18	Allied III (Allied Electronics for other major students)	ELECTRONIC DEVICES	4	2	25	75	100	30	40	
		19	Allied Practical – III (Allied Practical for other major students)	ELECTRONIC DEVICES AND DIGITAL CIRCUITS LAB	2	2	50	50	100	20	40	
	IV	20	Skilled Based subject -I	CONSUMER ELECTRONIC APPLIANCES	4	4	25	75	100	30	40	
	IV	21	Non-Major Elective - I	(A)ELECTRONIC TROUBLE SHOOTING (OR) (B)COMPUTER HARDWARE	30	2	25	75	100	30	40	
	SUB- TOTAL					22						

Sem.	Pt I/II/ III/ IV/V	Su b No.	Subject status	Subject Title	Hrs/ week	Cre dits	Marks					
							Maximum			Passing minimum		
							Int.	Ext.	Tot.	Ext.	Tot.	
IV	III	22	Core - 5	LINEAR INTEGRATED CIRCUITS	6	4	25	75	100	30	40	
		23	Major Practical - IV	LINEAR INTEGRATED CIRCUITS AND ELECTRONIC CIRCUITS LAB	6	4	50	50	100	20	40	
		24	Major Elective-I (Select any one)	(A)COMPUTER NETWORKS (OR) (b) ELECTRICAL MACHINES	6	5	25	75	100	30	40	
		25	Allied – IV (Allied Electronics for other major students)	DIGITAL CIRCUITS	4	4	25	75	100	30	40	
		26	Practical – IV (Allied Practical for other major students)	ELECTRONIC DEVICES AND DIGITAL CIRCUITS LAB	2	2	50	50	100	20	40	
	IV	27	Skilled Based subject - II	MAINTENANCE AND TROUBLESHOOTIN G OF AUDIO AND VIDEO EQUIPMENT	4	4	25	75	100	30	40	
	IV	28	Non Major Elective-II (Select any one)	(A) RADIO AND TELEVISION (OR) (B)RADAR AND NAVIGATION	6	2	25	75	100	30	40	
	V		Extension Activity	NCC,NSS, YRC, YWF		1						
	SUB- TOTAL			30	26							

MSU/2016-17/UG-Colleges/Part-III /(B.SC.ELECTRONICS)/ Semester-III/Ppr.no.15/Core-3

ELECTRONIC CIRCUITS

UNIT I

Rectifiers- half wave rectifier, full wave rectifier, bridge rectifier, Inductor- Capacitor-L type filters-ripple factor-Voltage regulator(series type)-current limit over load production-introduction to IC fixed and variable IC 723,78XX,79XX-voltage regulators-formula value substitution problems.

UNIT II

Amplifiers-general principle of operation-classification of amplifiers-classification of distortion (amplitudes, frequency, phase)-RC coupled amplifier-gain-frequency response-input and output impedance -multistage amplifiers-transformer couple amplifiers-frequency response-formula value substitution problems.

UNIT III

Introduction-classification power amplifier-class A power amplifier-class A push pull amplifier-class B power amplifier- class B push pull amplifier- class C power amplifier- class C push pull amplifier-power dissipation output power-distortion-formula value substitution problems.

UNIT IV

Feed back-basic concepts-characteristics-effect of negative feedback- on gain- stability-distortion-band width- analysis of voltage and current feedback amplifier circuits- formula value substitution problems.

UNIT V

Classification of oscillators-use of positive feedback – barkhausen criterion for oscillation-colpitts oscillator-Hartley oscillator-wein bridge oscillator- phase shift oscillator- crystal oscillator-frequency stability of oscillators-multivibrators (mono, astable, bistable)- formula value substitution problems.

BOOKS FOR REFERENCE:

- 1. Electronic devices and circuits-Millman & Halkias.
- 2. Electronic devices and applications and Integrated circuits-Mathu.
- 3. Basic Electronics-B.L.Theraja.
- 4. Electronic devices and circuits- G.K.Mithal, Khanna publishers.
- 5. Electronic devices and circuits Allen mottershead.
- 6. Problems and solutions of electronic devices and circuits-Experience teachers (CBS publication, New Delhi).

MSU/2016-17/UG-Colleges/Part-III /(B.SC.ELECTRONICS)/ Semester-III/Ppr.no.16/Core-4

ELECTRONIC MEASUREMENTS AND CIRCUIT THEORY

UNIT I

Measurements, errors in measurements- measurement standard, Classification and characteristics of Transducers, AC/DC Bridge measurements and their applications.

UNIT II

PMMC – DC ammeter – DC voltmeter - Voltmeter sensitivity - Ohm meter – VOM or Multimeter – Calibration Digital Voltmeters and Multimeters, AC Voltmeter-Vector Voltmeter- CRO-Block Diagram – single beam – dual trace – Sampling Oscilloscope,

UNIT III

Ohms Law-power Energy-resistors in series, parallel- Kirchoff's Laws and their applications – Branch and loop currents- mesh and node analysis.

UNIT IV

Fundamental ideas of AC circuits - impedance of RL, RC, RLC circuits-Resonance in AC circuits-series and parallel.

UNIT V

Network graph of a network- concept of tree- branches and chords dual networks- Network theorems: Superposition, Thevenin, Norton, Maximum Power transfer Theorem

BOOKS FOR REFERENCE:

- 1. C.S.Rangan "Instrumentation Devices and Systems" Tata McGraw Hill, 1998.
- 2. Copper "Electronic Instrumentation and Measurement Techniques" PHI
- 3. A.J. Bouwels "Digital Instrumentation", McGraw Hill, 1986
- 4. C.Barney "Intelligent Instrumentation" Prentice Hall of India, 1985
- 5. Oliver and Cage "Electronic Measurements and Instrumentation" McGraw HILL,1975
- 6. Deobelin "Measurements Systems" McGraw HILL, 1990
- 7. Electronic circuits Edminister (Schaum outline series TMH)
- 8. Circuits and networks, Analysis and synthesis A.Sudakar & S.P. Shyammohan (TMH).
- 9. Networks, analysis and synthesis Umesh sinha.
- Electronic circuits Theory Dr.M.Arumugam & Dr.N.Prem Kumaran (Khanna Publishers)

MSU/2016-17/UG-Colleges/Part-III/ (B.SC.ELECTRONICS)/ Semester-III/Ppr.no.17/ Major Practical – III

CIRCUITS AND MEASUREMENTS LAB

All experiments have to be carried out compulsorily from A and B

A. Circuits Lab

- 1. To familiarize with basic electronic components (R, C, L, diodes, transistors), digital Multimeter, Function Generator and Oscilloscope.
- 2. Measurement of Amplitude, Frequency & Phase difference using Oscilloscope.
- 3. Verification of Kirchoff's laws.
- 4. Verification of Thevenin's theorem
- 5. Verification of Norton's theorem.
- 6. Verification of Superposition Theorem.
- 7. Verification of Reciprocity Theorem.
- 8. Verification of Maximum Power Transfer Theorem.
- 9. Transient Response
- 10. Series resonance.
- 11. Parallel Resonance

B. Measurements Lab

- 1. Wheatstone bridge
- 2. Kelvin double bridge
- 3. Maxwell bridge
- 4. Hay bridge
- 5. Schering bridge
- 6. LVDT
- 7. Displacement meter
- 8. Transducer Applications and Measurement
- 9. Extension of range of PMMC meter
- 10. Current Measurement using sensors

^{*} Students should be encouraged to do a mini project which should be submitted at the end of the IV semester

MSU/2016-17/UG-Colleges/Part-III/(B.SC.ELECTRONICS)/ Semester-III/Ppr.no.18/Allied-III

ELECTRONIC DEVICES

UNIT I

Basic components used in Electronics -Resistor, capacitor, inductor and their different types - Diodes - Light Emitting diode (LED), Photo diode - Zener diode, LDR.

UNIT II

Power Supplies -Need of a power supply - Types of power supplies - Different types of unregulated and regulated power supplies - IC Regulated power supply - switched mode power supply.

UNIT III

Amplifiers- Transistor as an amplifier - Types of Amplifiers - Single stage amplifier - Amplifiers with feedback - Negative feed back amplifiers.

UNIT IV

Oscillators & Switching circuits - Transistor as an oscillator - Barhausen criteria - Hartley and colpitt's oscillators - Crystal oscillators

UNIT V

Electrical elements-Potential difference- Electric current-Electromotive force-Ohms law-Kirchoff's law- Kirchoff's current law- resistance in series circuits, parallel circuits and Concept of voltage source and current source

TEXT BOOK:

- 1. Principles of Electronics V.K. Mehta S.Chand Publication, New Delhi
- 2. Electronic devices and circuits G.J.Mithal, Khana publishers, New Delhi
- 3. Modern Physics R.Murugesan S.Chand publication, New Delhi
- 4. Basic Electronics B.L. Theraja S.Chand publication, New Delhi

BOOK FOR REFERENCE:

- 1. Electronic devices and circuits B.Sasikala, S.Poornachandra Scitech publication India Pvt. Ltd., Chennai.
- 2. Electronic devices and Application and integrated circuits Mathur kulashethra & Chandra Umesh publication, New Delhi.
- 3. Hand book of Electronics Gupta & Kumar, Pragathi prakashan, Delhi.

MSU/2016-17/UG-Colleges/Part-III/ (B.SC.ELECTRONICS)/ Semester-III/Ppr.no.19/ Allied Practical - III

ELECTRONIC DEVICES AND DIGITAL CIRCUITS LAB

PART – A

- 1. Characteristics of PN diode
- 2. Characteristics of Zener diode
- 3. Transistor Characteristics Common base
- 4. Transistor Characteristics Common emitter
- 5. Transistor Characteristics Common collector
- 6. Measurement of stability factor of self biasing method
- 7. Measurement of stability factor of fixed biasing method
- 8. FET Characteristics
- 9. Photoconductivity of LDR
- 10. Characteristics of Photo diode
- 11. Characteristics of SCR
- 12. Characteristics of Photo transistor

MSU/2016-17/UG-Colleges/Part-III/(B.SC.ELECTRONICS)/ Semester-III/Ppr.no.20/ Skill Based Subject - I

CONSUMER ELECTRONIC APPLIANCES

UNIT I

MICROWAVE OVENS

Microwaves - Properties and generation - Microwave oven block diagram - LCD timer with alarm - Controllers - Wiring and Safety instructions - Care and Cleaning.

UNIT II

WASHING MACHINES

Electronic controller for washing machines - Washing machine hardware and software - Types of washing machines - Fuzzy logic washing machines - Features of washing machines.

UNIT III

AIR CONDITIONERS AND REFRIGERATORS

Air Conditioning - Components of air conditioning systems - All water air conditioning systems - All air conditioning systems - Unitary and central air conditioning systems - Split air conditioners.

UNIT IV

HOME / OFFICE DIGITAL DEVICES

Facsimile machine - Xerographic copier - Calculators - Structure of a calculator - Internal Organization of a calculators - Servicing electronic calculators - Digital clocks - Block diagram of a digital clock.

UNIT V

DIGITAL ACCESS DEVICES

Digital computer - Internet access - Online ticket reservation - Functions and networks - Barcode Scanner and decoder - Electronic Fund Transfer - Automated Teller Machines (ATMs) - Set-Top boxes - Digital cable TV - Video on demand.

TEXT BOOK:

1. Consumer Electronic - S.P. Bali, Pearson Education, New Delhi, 2005.

MSU/2016-17/UG-Colleges/Part-III/(B.SC.ELECTRONICS)/ Semester-III/Ppr.no.21 (A)/ Non- Major Elective - I (A)

ELECTRONIC TROUBLESHOOTING

UNIT I

Corrective maintenance-Troubleshooting-Repairing troubles-Testing or operational check-Troubleshooting aids-corrective maintenance time-intermittent troubles-Precautions while trouble shooting and repair

UNIT II

Preventive maintenance-Merits and demerits of preventive maintenance-Preventive maintenance program- Maintenance schedule-Maintenance record-shut down planning-calibration - inspection

UNIT III

Classification of printed circuit boards-Manufacturing process-Repair of PCB's

UNIT IV

Digital test instruments-Basic digital Measurements-Testing digital circuits-Digital equipment service literature-Digital trouble shooting—use of some test equipments

UNIT V

Troubleshooting laboratory and Industrial equipments—Power supplies , oscillators, function generators-Speed controllers-C.R.O

TEXT BOOK

Maintenance of Electronic Equipments-K.S Jamwal- Dhanpat Rai &Co

MSU/2016-17/UG-Colleges/Part-III/(B.SC.ELECTRONICS)/ Semester-III/Ppr.no.21(B)/ Non- Major Elective - I (B)

COMPUTER HARDWARE

UNIT I

CPU essentials – processor modes – modern CPU concepts – Architectural performance features – the Intel's CPU UNIT II

Essential memory concepts – memory organizations – memory packages –modules – logical memory organizations – memory considerations – memory types – memory techniques – selecting and installing memory.

UNIT III

Active motherboards – sockets and slots – Intel D850GB – Pentium4 mother board – expansion slots – form factor – upgrading a mother board – chipsets –north bridge – south bridge

UNIT IV

Power supplies and power management – concepts of switching regulation – potential Power problems – power management. The floppy drive – magnetic storage – magnetic recording principles – data and disk organization – floppy drive – hard drive – data organization and hard drive – sector layout

UNIT V

IDE drive standard and features – Hard drive electronics – CDROM drive – construction – CDROM electronics – DVD-ROM – DVD media – DVD drive and decoder.

TEXT BOOK:

1. Stephen J.Bigelow, "Trouble Shooting, maintaining and Repairing PCs", Tata McGraw-Hill, New Delhi, 2001.

BOOK FOR REFERENCE:

- 1. Craig Zacker & John Rourke, "The complete reference: PC hardware", Tata McGraw-Hill, New Delhi, 2001.
- 2. Mike Meyers, "Introduction to PC Hardware and Trouble shooting", Tata McGraw-Hill, New Delhi, 2003.
- 3. B.Govindarajulu, "IBM PC and Clones hardware trouble shooting and Maintenance", Tata McGraw-Hill, New Delhi, 2002.

MSU/2016-17/UG-Colleges/Part-III (B.SC.ELECTRONICS)/ Semester-IV/Ppr.no.22/Core-5

LINEAR INTEGRATED CIRCUITS

UNIT I

Differential amplifiers-dual input-balance output differential amplifier- current mirror- level translator- block diagram representation of typical op amp- interpreting a typical set of data sheets- the ideal opamp- equivalent circuit of an op amp- ideal voltage transfer curve.

UNIT II

Input off set voltage – input bias current- input offset current- total output offset voltage- input and output resistance-thermal drift-CMRR-voltage shunt and voltage series feed back amplifiers.

UNIT III

Frequency response of initially compensated op amp- circuit stability-slew rate. Filters: low pass filters- high pass filters- band pass filters-band reject filters-all pass filters.

UNIT IV

Adder-subtractor-Integrator-differentiator – V to I and I to V converter.

Oscillator: Principles-types-frequency stability phase shift oscillator-wein bridge oscillator- square wave generator —triangular wave generator.

UNIT V

Comparator-Schmitt trigger-clipper and clamper-peak detector-zero crossing detectors- IC-555 function block diagram-mono stable operation –astable operation –applications

BOOKS FOR REFERENCE

- 1. Linear Integrated Circuits- D.Roychoudry & Shail Jain (New age publications 1999).
- 2. Operational amplifiers and linear integrated circuits-F.Couglin & Drison (4th edition prentice hall of India, 1992).
- 3. Operational amplifiers and linear integrated circuits- Denton J.Dailey, McGraw Hill 1989.
- 4. Operational amplifiers and linear integrated circuits-Ramakant A.Gayakwad 3rd edition PHI.
- 5. Second Edn. Operational amplifiers and Linear Ics-David A. Bell.

MSU/2016-17/UG-Colleges/Part-III (B.SC.ELECTRONICS)/ Semester-IV/Ppr.no.23/ Core Practical –IV

LINEAR INTEGRATED CIRCUITS AND ELECTRONIC CIRCUITS LAB

All experiments have to be carried out compulsorily from A and B

A. Linear Integrated Circuits Lab

- 1. Inverting and Non Inverting Amplifier.
- 2. Integrator and Differentiator.
- 3. Instrumentation Amplifier.
- 4. High pass,Low pass and Band pass filters.
- 5. Astable and Monostable multivibrator using OP-AMP.
- 6. Phase shift and Wien Bridge oscillator using OP-AMP.
- 7. Digital to Analog Converter, Analog to Digital Converter.
- 8. Astable Multivibrator and Monostable Multivibrator using IC555.
- 9. Schmitt Trigger and Comparator using OP-AMP.
- 10. Design of light switch using LDR and Relay.

B. Electronic Circuits Lab

- 1. Half wave rectifier and Full wave rectifier
- 2. Construction of power supply using C filter and zener diode as regulator.
- 3. Characteristics of Class A Power Amplifier
- 4. Characteristics of Class B Power Amplifier
- 5. Design a Single Stage CE amplifier.
- 6. Design of Two stage RC coupled Amplifier
- 7. Clipping and Clamping circuits
- 8. Hartley Oscillator
- 9. Colpitt's Oscillator.
- 10. Astable Multivibrator using BJT.

MSU/2016-17/UG-Colleges/Part-III(B.SC.ELECTRONICS)/ Semester-IV/Ppr.no.24(A)/ Major Elective - I (A)

COMPUTER NETWORKS

UNIT I

Data Communication Concepts: Transmission media – Data encoding – Interface and Modems – Multiplexing – Error detection and correction – Digital subscriber line – Circuit switching – Packet switching – Message switching.

UNIT II

Wide Area Networks: ISO – OSI layered architecture – Function of the layers – Data link protocols – HDLC, LAPB, LAPD, Inter networking devices – Repeaters, Bridges, Routers, Routing algorithms – Distance vector routing, link state routing, X.25protocol,congestioncontrol.

UNIT III

Frame relay and ATM networks: Frame relay operation – layers and traffic control; ATM networks – Architecture switching, layers service classes.

UNIT IV

Local Area Network: LAN topology – Ethernet – Token bus – Token ring – FDDI – Wireless LAN, ATM LAN – IEEE 802 Medium access control layer standard –Random access protocols – ALOHA – Slotted ALOHA.

UNIT V

OSI Layers: Transport layer issues – Session layer – Synchronization – Presentation layer – Encryption, decryption, Application layer – Message handling system, file transfer, virtual terminal – E-mail.

TEXT BOOK

1. William Stallings, "Data and Computer Communication", sixth edition, Pearson education Asia, 2000.

REFERENCES

1. Behrouz A, Forouzan, "Data Communication and Networking", second edition,

Tata McGraw-Hill, 2000.

2. Fred Halsall, "Data Communication, Computer networks and Open Systems",

Fourth edition, Addison Wesley, 1995.

3. Andrew S. Tanenbaum, "Computer networks", Third edition, PHI, 1996,

MSU/2016-17/UG-Colleges/Part-III(B.SC.ELECTRONICS)/ Semester-IV/Ppr.no.24(B) Major Elective – I (B)

ELECTRICAL MACHINES

UNIT I

D.C Motors: Motor Principle-Comparison of motor and generator action- characteristics of shunt, series and compound wound motors -starting — 3-point and 4-point starters — Calculation of resistance elements for shunt motor starters — methods of speed control of shunt, series and compound wound motors — Electric braking —Electronic speed control.

UNIT II

DC Generator-Working principle –Parts of DC Generator–Types of armature windings-EMF equation of generator-Characteristics of dc generator-classification of DC generator-self excitation – Armature reaction- remedies-commutation-Methods of removing commutation-losses in DC generators-Efficiency of DC generator-Rating of a generator

UNIT III

Transformers-Working principle of transformers-Transformer construction-Core type transformer-shell type transformer-voltage transformation ratio-losses-Efficiency- Rating-Construction and use of autotransformer-parallel operation of transformer

UNIT IV

Alternator-Working principle-Parts-types-relation between Speed-Poles-Frequency-coil span and distribution factor-Equation of Alternator-Rating-losses-Synchronization-Parallel operation of alternators

UNIT V

Single phase motors-Induction motor-Shaded pole-Split phase-Capacitor motor-Capacitor start-Capacitor start capacitor run-Universal motor or AC series motor-Repulsion motor-synchronous motors-applications 3 Ø Induction motor- Squirrel cage motor-Slipring induction motor-Double squirrel cage induction motor-Starting of induction motor-Star delta starter-Determining phase sequence-Speed control-Magnetic locking-Losses.

TEXT BOOK

Electrical Technology-B.L Theraja A.K Theraja

REFERENCE

Basic electrical Engg -P.S Dhogal TMH

MSU/2016-17/UG-Colleges/Part-III/(B.SC.ELECTRONICS)/ Semester-IV/Ppr.no.25/ Allied- IV DIGITAL CIRCUITS

UNIT I

Basics and Number systems-Digital signals – Basic Digital circuits – NAND, NOR, EX-OR – Universality of NAND and NOR – Number systems – Conversions.

UNIT II

Combinational Logic Design-Boolean Algebra – Demorgan's Theorem – Karnaugh Map – Don't care condition – Multiplexer – Demultiplexer.

UNIT III

Flipflops-Rs flipflop – JKFF – D FF – T FF – Master slane FF – Applications

UNIT IV

Shift Registers and counters-Registers – Left shift, Right shift, Parallel in parallel out Counters – Ripple counter, Decade counter – Modulo counters.

UNIT V

Memories-RAM – static, Dynamic – Diode ROM – PROM – EPROM – E2 PROM

TEXT BOOK

- 1. Modern Digital electronics: R.P. Jain, TataMcGraw Hill 1997
- 2. Digital Electronics, V.K. Puri, Tata Mc Graw Hill
- 3. Computer System Aaraachitecture, 2nd Edition, M. Marris mano, Prentice Hall, 1998

MSU/2016-17/UG-Colleges/Part-III(B.SC.ELECTRONICS)/ Semester-IV/Ppr.no.26/ Allied Practical – IV ELECTRONIC DEVICES AND DIGITAL CIRCUITS LAB

PART – A (Carried out in third semester)

- 1. Characteristics of PN diode
- 2. Characteristics of Zener diode
- 3. Transistor Characteristics Common base
- 4. Transistor Characteristics Common emitter
- 5. Transistor Characteristics Common collector
- 6. Measurement of stability factor of self biasing method
- 7. Measurement of stability factor of fixed biasing method
- 8. FET Characteristics
- 9. Photoconductivity of LDR
- 10. Characteristics of Photo diode
- 11. Characteristics of SCR
- 12. Characteristics of Photo transistor

PART – B (To be carried out in fourth semester)

- 1. Study of AND, OR, NOT, NAND, NOR and XOR gates using IC
- 2. Designing of all the logic gates using NAND gate IC
- 3. Designing of all the logic gates using NOR gate IC
- 4. Verification of Demorgan's theorems
- 5. Construction of gates using discrete components
- 6. Code conversion
- 7. Half adder and Full adder
- 8. Half subtractor and Full subtractor
- 9. Multiplexer and De-Multiplexer
- 10. Encoder and Decoder
- 11. Study of Flip flops
- 12. Shift register
- 13. Ripple counter

MSU/2016-17/UG-Colleges/Part-III(B.SC.ELECTRONICS)/ Semester-IV/Ppr.no.27/ Skilled Based Subject - II

MAINTENANCE AND TROUBLE SHOOTING OF AUDIO AND VIDEO EQUIPMENTS

UNIT I

Recording and reproduction principles - Optical recording - Different types - Methods of recording and reproduction - Optical recording on compact disc - play back process - Advantage of compact disc - Trouble shooting in compact disc.

UNIT II

Stereophony - Stereophonic recording on disc and reproduction - Hi-Fi Stereo reproducing system - Block diagram of Public Addressing system - Requirement of Public Addressing system - Typical PA installation planning for a public meeting - PA system for an auditorium troubleshooting in PA system.

UNIT III

Monochrome, PAL colour TV transmitters Faults in TV transmitter - Testing of TV transmissions monochrome TV receiver - Fault in monochrome TV receiver - PAL colour TV receiver - Faults in colour TV receiver - Testing of TV receiver.

UNIT IV

Video disc format - Video recording on disk - Very High density disk - High definition TV system - Block diagram of MAC encoder - MAC receiver - Advantages.

UNIT V

Digital TV system - Cable TV concepts set top box - Dish TV and connections - Closed circuit television - Introduction to FLAT LCD and Plasma television systems.

TEXTBOOKS

- 1. Electronic Instruments and systems, Principles, Maintenance and Troubleshooting -
 - R.G. Gupta Tata Mc Graw Hill Publishing Co.Ltd.
- 2. Colour Television Theory and Practice S.P. Bali, Tata Mc Graw Hill Publishing Co.Ltd.

REFERENCE BOOKS

- 1. Audio and Video systems R.G. Gupta Tata Mc Graw Hill Publishing Co.Ltd.
- 2. Monochrome and Colour Television R. Gulati. New Age Interbational (P) Ltd. New Delhi.

MSU/2016-17/UG-Colleges/Part-IV/(B.SC.ELECTRONICS)/ Semester-IV/Ppr.no.28(A) /Non-Major Elective - II (A)

RADIO AND TELEVISION

UNIT I

Radio Communications- Radio waves – Frequency & Wavelength – Modulation – Propagation of radio waves – Ground, Sky and Space waves – Fading – Radio Broadcast – Transmission and Reception.

UNIT II

Radio Transmission-Classification of radio waves – Amplitude modulation – Frequency modulation – Radio transmitter – AM transmitter – Antennas (transmitting antenna), Basic ideas.

UNIT III

Radio Reception- Reception and detection of amplitude modulated waves – Function of a radio receiver – Characteristics of a receiver – Super heterodyne receiver – FM Broadcast receiver.

Unit IV

TV Transmission-TV broadcasting system – scanning – Synchronization – Blanking – Video Signal – Television band and channels – Camera tubes – Image orthicon Vision.

UNIT V

TV Reception-TV receiver – Tuner – Picture section – Receiver sweep section – Sound section power supply section – Color Mixing principles in color TV.

TEXT BOOKS

- 1. Basic Television and Video Systems, B.Grob, McGraw Hill
- 2. Electronics and Radio Engineering, F.E. Terman, McGraw Hill

REFERENCE BOOK

1. Monochrome and Color Television, R.R. Gulari, Wiley Eastern Ltd.,

MSU/2016-17/UG-Colleges/Part-IV/(B.SC.ELECTRONICS)/ Semester-IV/Ppr.no.28 (B) /Non Major Elective - II (B)

RADAR AND NAVIGATION

UNIT I

An Introduction to Radar: Basic Radar, The simple form of the Radar Equation Block schematic of pulse radar- Radar frequencies- Applications of radar, the origins of Radar

UNIT-II

CW radar- applications of CW radar- CW radar with nonzero IF- FM CW radar-FM CW altimeter-MTI and Pulse Doppler radar.

UNIT-III

Introduction to Doppler and MTI Radar, delay line Cancellers, digital MTI processing, Moving target detector, pulse Doppler Radar

UNIT IV

Direction finders- Instrument Landing System- Radio ranges. Navigation- Hyperbolic navigation- LORAN. Satellite navigation- Doppler navigation

UNIT-V

Global positioning system- Different types of microwave antennas-basic principles. Microwave passive devices, Coaxial connectors and adapters, Phase shifters, Attenuators, Waveguide Tees, Magic tees,

TEXT BOOKS

- 1. Microwave Devices and circuits- Liao / Pearson Education
- 2. Introduction to Radar systems-Merrill I Skolnik, 3rd Ed, TMH, 2001.
- 3 Microwave Engineering Annapurna Das, Sisir K Das TMH Publication, 2001

REFERENCE BOOK

- 1. Microwave Engineering David M Pozar, John Wiley, 2e, 2004
- 2. Microwave devices and circuit: Samuel Liao, PHI.
- 3. Microwave and radar A K Maini, Khanna Publishers.
- 4. Microwave and Radar Engg. M Kulkarni.
- 5. Introduction to radar systems Merrill I Skolnik, McGraw Hill.
- 6. Radar systems and radio aids to navigation A K Sen & A B Bhattacharya.